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Note 

A Numerical Differentiator 

1. INTR~DLJCTI~N 

It is considered wise to avoid numerical differentiation wherever possible because 
the very nature of the problem can induce numerical cancellation and the result is 
relatively low accuracy in the derivative values (Hildebrand [l]). However, in some 
physical problems numerical differentiation is difficult to avoid completely while in 
others derivatives appear, but their direct evaluation is usually avoided by suitable 
reformulation. Such a problem arose in the numerical technique of (Blakemore, 
Evans and Hyslop [3], [4]) for solving the Hartree-Fock equations for a general 
atom. The iterated wave functions at each stage are represented as tables of values, 
very much in the spirit of Hartree’s original work [8]. However in the present context 
the tabular points are chosen to be the cosine weighted abscissas of the Clenshaw- 
Curtis quadrature formula [5] on a set of subintervals. The number of abscissas in 
each subinterval was chosen to yield the required accuracy and the integrations 
(both definite and indefinite) could be performed using just these tabulated values. 
Furthermore the subintervals extended until the contribution from the integrands had 
fallen off sufficiently to be neglected. In this way the infinite range was handled, and 
any regions in which the integrands varied rapidly could have a concentration of 
abscissas. 

The Hartree-Fock equations in general involve Lagrange multipliers Xij which 
need to be evaluated as part of the above scheme. It was decided to investigate the 
use of the direct evaluation of the formula 

where Nj is the number of electrons in the jth. orbital, Pi and Pj are the r-weighted 
wave functions in the ith and jth orbitals respectively, 2 is the atomic number, Ii is 
the Z-quantum number for the orbital and Z is an integral which can be treated directly. 
The form (1) is only needed in atoms which have different orbitals with equal numbers 
of electrons and whose Z-quantum numbers are the same. The hij’s are then used when 
applying the Roothaan procedure [6], which deals with the non-pseudo-eigenvalue 
form of the Hartree-Fock equations. Alternative procedures are available for this 
problem which avoid numerical differentiation, but the direct approach may be more 
generally applicable to other integral and integro-differential equations where alterna- 
tives are not possible. Hence a direct numerical approach was investigated in this 
problem. 
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Integration of (I) by parts shows that integrals of the form 

are required in which the functions Pi and Pi are known at tabulated points. Clearly, 
with this approach, a numerical differentiation procedure is required for these terms 
which has the property that errors may be continuously monitored during the compu- 
tation in the same way as in the numerical integration method. Form (2) is used in 
preference to (1) as the second order derivatives are not obtained as a by-product of 
other calculations as in some conventional approaches, but need to be found from 
the wave functions. In this situation errors are reduced by having only first order 
derivatives to find. 

2. THE DIFFERENTIATION FORMULA 

Consider a functionf(x) which is tabulated on a particular subinterval [a, b]. Then 
the function F(t) given by 

is defined on the interval [- 1, l] and the usual Chebyshev expansion yields 

F(t) = f/a&(t) + E(t) (4) 
i=O 

where 

T,(r) = cos(i cos-l t), (6) 

E(t) is the error term, C’ denotes the first term is halved and C” denotes that the first 
and last terms are halved (Clenshaw and Curtis [5]). 

The derivative can be written as 

df 
-z 

dx 

= & i a& sin il3/sin e (7) 

where 0 = cos-l t and x = i(b + a) + $(b - a)t. 
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In the case when the derivative is required at the cosine weighted points x, = 
(b - a)/2 COS(Z-.s/M) + (b + a)/2 then 8, = rs/M and the formula reduces to 

Hence a table of values is generated which has immediate application in a Clenshaw- 
Curtis quadrature routine to evaluate (2). For wider applications the more general 
formula (7) would be employed. 

3. ERRORS 

If we write for the infinite expansion 

F(t) = f’ A&(t) (9) 
i=O 

then it was shown by Clenshaw and Curtis and again by O’Hara and Smith [7] that 
the coefficients for the finite expansion are given by 

Then the error E’(t) in dF/dt is given by: 

f (Am--i + Aw+i) 
I 

T;(t) + f AiT; (11) 
j=l i=Mil 

The coefficients Aj fall off as KM/jQ for .j > M where (p - 1) is the order of the first 
discontinuous derivative off(t) and KM is a constant independent ofj. For example a 
function with a continuous first derivative but a discontinuous second derivative has a 
fall off like KM/j3 (O’Hara and Smith [7]) which will be the most slowly converging case 
it will be necessary to consider here. It then follows that computational approximations 

A,,, = a,/2 and A,-, = uMmmi (12) 

can be adopted to estimate the A’s for use in an error estimate of the O’Hara and 
Smith variety. 
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The error formula for E’(t) may be re-grouped in terms of ascending coefficients in 
the form 

E’(t) = -AhfGf(t) + AA4+#-ii+&) - KL(t>l + *** + &-I&4-I(l) - W)l 

+ A2MGdf) + ABMI-l[GM+l(~) - G(t)1 f ... + &KA4(t) - 2%(t)] 

+ &4+1KM+&) - ~M-I(~)l + ‘.. + &44--1KM-l(f~ - mt)l 

+ A&T;M(t) - 2G4(t)l + ... . 

Applying the inequality 

j sin j8 
T;(t) = ‘sin < .j2 where t = cos 0 

(13) 

(14) 

and using the relation 

I %4+i(t) - G-i( = 1 2i cos ifI sin rile + 2m cos me sin if3 
sin e < 4mi (15) 

yields 

I -w)l < {M2 I AM I + 4M I A+1 I + 8M I A,,, I + ... + 4M(M - 1) 1 A&&-i/ 
+ j A2M I 4M2 - . ..} (16) 

Hence if the AM’s fall off sufficiently quickly then 

I E’(t)1 N KJMP-2 (17) 

The upper bound on T;(t) occurs at the end points where the worst error is to be 
expected. The best error in the range will be of order 1 /M times the worst. 

In order to make a dynamic estimate of the error in the programme, assume the 
form (17) and use (12) to give 

K,,, - AMM” (18) 

and 

I IT( = A,M2 = a,M2/2 (19) 

which gives a simple error estimate. 
This error estimate appears to give the order of the error successfully in the examples 

considered in the next paragraph. 
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4. RESULTS AND CONCLUSIONS 

Testing was carried out firstly on the function 

for a range of c = (0.5, 1 .O, 2.0, 4.0, 8.0) on the interval x E [0, 11. The larger c the 
steeper is the curve being considered. This function has physical significance in the 
underlying application which initiated this work in that the function is a Slater func- 
tion for atomic orbitals with quantum number I = 1. As a comparison a conventional 
finite difference formula in Lagrangian form was applied to the problem with the same 
number of points (now equally spaced). Formulae of orders M = 5, 10, 15, 20 were 
used on each c value. The actual absolute errors from both the Chebyshev method 
and the finite difference method, together with the above estimates of the Chebyshev 
error were tabulated over a range of 20 points in the interval of interest. The errors 
varied from the largest values at the end points to the best values at the middle of the 
range, as would be expected from (14) for the Chebyshev case. This effect was particu- 
larly marked in the finite difference errors, the Chebyshev errors usually giving a 
more uniform spread. However the finite difference method suffers much more severe 
loss of accuracy than the Chebyshev method at these end point regions. It appears 

TABLE I 

Chebyshev and Lagrangian Absolute Errors for f’(x) on [0, l] wheref(x) = cxeAcs with an (M + 1) 
Point Formula 

Actual Actual Actual Actual Actual Actual Estimated 
Chebyshev Lagrange Chebyshev Lagrange Chebyshev Lagrange truncation 

C M error at 0 error at 0 error at 1 error at 1 error at 4 error at 4 error 

0.5 5 
10 
15 

1.0 5 
10 
15 

2.0 5 
10 
15 

4.0 5 
10 
15 

8.0 5 
10 
15 
20 

9.2(-5) 3.9(-6) 96-5) 3.6(-6) 1.7(-5) 2.3(-7) 
8.7(--11) 7.3(-10) 2.6(-9) 44-9) 4.7(-11) 1.5(-10) 
l.O(-9) 3.5(-8) 5.4(-9) 45-8) l.l(-IO) 3.2(- 10) 

2.2(-3) 2.0( -4) 2.3(-3) 16-4) 4.2( -4) l.l(-5) 
4.9(-IO) 2.5(-9) 3.0(-9) 4.9(-9) 12-10) l.l(-10) 
6.4(-10) 6.8(-8) l.l(-8) l.O(-8) 1.5(-10) 4.3(-10) 

3.7(-2) 7.8(-3) 4.4(-2) 55-3) 8.1(-3) 4.1(-4) 
3.6(-7) 75-8) 3.7(-7) 5.6(-8) 3.9(-9) 4.2(- 10) 
2.5(-9) 7.6(-8) l.O(-8) 5.9( -8) 1.3(-10) 6.3(-10) 

3.4(-l) 2.0(-l) 5.0(- 1) 1.0(--l) 9.7(-2) 8.7(-3) 
13-4) 6.1(-5) 2.7(-6) 2.0(-7) 14-4) 4.2(-5) 
3.4(-9) 4.0(-8) 7.4(-9) 1.7(-8) 8.6(- 10) 1.9(-10) 

5.8(-l) 2.6(O) 2.4(O) 6.1(-l) 5.4(-l) 6.8(-2) 
1.7(-2) 2.1(-2) 2.1(-2) 9.7(-3) 7.7(-4) 5.3(-5) 
5.8(-6) 1.4(-5) 6.3(-6) 8.4(-6) 1.3(-7) 1.2(-9) 
7.2(-7) 2.0(-7) l.O(-8) 2.5(-7) 3.1(-10) 2.7(-10) 

94-5) 
l.l(-10) 
1.7(-10) 

2.2(-3) 
4.5(-10) 
4.7(-10) 

4.1(-2) 
3 7(-7) 
l.O(-10) 

4.4(-l) 
1.3(-4) 
7.1(-10) 

2.1(O) 
2.0(-2) 
6.1(-6) 
1.7(-9) 
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that the low order formulae of the finite difference method are superior to the corre- 
sponding Chebyshev formulae, but as the order increases the Chebyshev formulae 
become quickly more accurate for the same number of points. They have the added 
advantage of reasonable uniformity over the range of differentiation and the error 
can be estimated with some confidence in the manner shown. Both formulae exhibit 
rounding error effects if the order is increased beyond that which first yields machine 
accuracy where it will be observed that a maximum precision of only around 9 figures 
could be anticipated in each case using single precision (11 digit) arithmetic. This is seen 
in the c = 0.5 case of Table I where these results are carried out. 

As a second more stringent test the routine was used on the function 

1 1 
F sm x 

with a varying interval so that the difficulty increased as the lower range of the interval 
approached the origin. The test intervals used were (1 .O, 2.0) (0.5, 1 .O) and (0.1, 0.5) 
and the results are tabulated in Table II. It is seen that the severe errors in the final 
range near the origin are adequately estimated. In fact the errors in this range are 
not as bad as they might appear from the actual absolute errors quoted, as the deriva- 
tives themselves are large. For instance at x = 0.1 the true derivative is 893.5 and the 
M = 20 formula predicts 894.8 whereas the finite difference formula yields 832.7. As 
percentage errors these are quite respectable for such a severe function. 

TABLE 11 

Chebyshev and Lagrangian Absolute Errors for f’(x) on [A, B] where f(x) = (I ;x) sin (1 !x) with 
an (M + 1) Point Formula 

Actual 
Actual Actual Chebyshev 

Chebyshev Lagrange error at 
A B M error at A error at A (A + B)/2 

1.0 2.0 5 1.2(-2) 
10 2.7(-5) 
1.5 3.0(-8) 
20 2.5(-8) 

0.5 1.0 5 2.2( - 1) 
10 3.4(-4) 
15 4.8(-7) 
20 1.5(-7) 

0.1 0.5 5 1.2(l) 
10 1.6(2) 
15 3.3(l) 
20 1.3(O) 

6.8(-4) 
4.2(-5) 
l.l(-7) 
1.8(-6) 

2.0( - 1) 
1.2(-4) 
3.6(-6) 
3.8(-5) 
8.1(2) 
7.8(2) 
2.3(2) 
6.1(l) 

2.4(-3) 
2.3(-6) 
4.2(-9) 
1.8(-g) 

4.4(-2) 
2.9(-5) 
6.3(-9) 
3.2(-9) 
9.9(l) 
1.2(l) 
I .2(O) 
6.5(-2) 

Actual 
Lagrange 
error at 

(A + BM 

l.l(-4) 
1.3(-7) 
6.3(-IO) 
3.9(-IO) 

7.2(-3) 
7.6(-7) 
7.0( - IO) 
7.0(-9) 
1.0(l) 
2.8(- 1) 
l.l(-2) 
9.1(-6) 

Estimated 
ElT0r 

1.3(-2) 
3.2(-5) 
3.5(-8) 
1.2(-9) 

33-l) 
3.5(-4) 
5.3(-7) 
1 J--9) 
3.1(2) 
7.7(l) 
2.8(l) 
2.5(O) 
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In conclusion therefore it appears that this is a practical proposition for numerical 
differentiation which is superior to the conventional finite difference approach in 
accuracy but has the added and important characteristic of yielding a reliable error 
estimate at any point. 
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